Astronomy Frontiers: 25 years ago and 25 years from now

Shane L. Larson
CIERA, Northwestern Astronomy, Adler Planetarium
s.larson@northwestern.edu

writescience.wordpress.com/
TWITTER: @sciencejedi

Southwest Montana Astronomical Society
Bozeman, MT
30 January 2015
Common thread: technology enables us to see more...
The Universe is 14.6 billion years old; it is awesome and mysterious.

Your career as an astronomer may only span 50 years or so.

How much can our understanding of the Universe change in 50 years?
25 years ago...

1987
This was (and is) our home. In 1987, the Earth and the other planets in the solar system were the only planets known...
Pluto was still a planet!
The 5m (200") Hale Telescope on Mount Palomar was the largest telescope in the world for 39 years. It had been built in 1948....
There was no Hubble Space Telescope.

It was launched in 1990.
Dobsonians were changing amateur astronomy...

...but they were mostly solid tubes.
The most distant object known was a quasar at a redshift of $z = 4$, 12.9 billion lightyears away.

Quasars were **the most energetic objects known**. We had no idea where the power comes from!
The last supernova near or in the Milky Way was Kepler’s Supernova in 1604, before the invention of the telescope!
In astronomy, the frontier is always on the move...

23 February 1987
SN 1987A exploded in the Large Magellanic Cloud, only 168,000 lightyears from Earth!
All stars die...

... from their deaths come everything we know
In a supernova, almost every proton crashes into an electron, making a neutron and a neutrino.
We detected neutrinos from Supernova 1987A — 24 out of $\sim 10^{57}$

This is one of the first times we do astronomy without light.
24 neutrinos out of 1,000,000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000

This is the beginning of precision astronomy... enabled by technology!
Fast forward to today...

2015
Hubble stared at an empty spot on the sky for 10 days, an area about the size of the eyeball on a dime, if held at arms length...
Hubble found galaxies... lots of galaxies!

There may be 600 billion galaxies in the Cosmos
Supermassive black holes power the quasars...

...and are harbored in the hearts of many galaxies.
Black holes are central to our thinking about many astrophysical phenomena...
The most distant thing we’ve seen is the Cosmic Microwave Background, emitted when atoms formed **400,000 years after the Big Bang.**
The largest effective telescope are the twin 10m Keck Telescopes in Hawaii, which work as one.

There are 18 telescopes larger than the Hale Telescope...
Large aperture Dobsonians are common!

...enabled by "technology" — truss designs.
Pluto is no longer a planet...
We know of 1885 planets around other stars!

Our ideas about planets are changing everyday.
The Universe is only 4% of stuff like me and you. We have no idea what the other 96% is!
Imagining the future...

2037
We will have detected planets like Earth around other stars... detected, and characterized atmospheres
Computing and simulations will be more capable and more important than they are today.
Exploding stars

Entire Galaxies

Colliding black holes
The largest telescopes will be enormous...
We probably still won’t know what Dark Energy and Dark Matter are... but we’ll be much better at observing it!
We will use gravity instead of light to observe the Cosmos...
Gravitational waves are emitted by moving mass, and change the distances between parts of our detectors...
LIGO will measure small distance changes equivalent to changing the distance to alpha Centauri (4.3 lightyears) by 10 µm.

10µm is about the width of a human hair. This is the new precision astronomy...
Gravitational Waves
The Music of the Cosmos

10 solar mass + 10,000 solar mass black holes

Circular Orbit
Eccentric Orbit
The things that will be discovered in your lifetimes, we haven’t even imagined yet.

You are living on the frontiers. We are the new explorers.

THANKS!