Starlight in the Night: Discovering the secret lives of stars

Shane L. Larson
Department of Physics
Utah State University
s.larson@usu.edu

Summer Star Party
Fossil Butte National Monument
17 September 2011
The lives of the stars, in the skies over Fossil Butte!

- Stellar evolution
- Birth of stars
- Groups of stars
- Death of stars
Recycling in the Universe

- Stellar evolution is a large process of recycling.
- Remnants remove material from the loop.
Birth of Stars

- Stellar birth begins in vast **molecular clouds** in space
- **Gravity** causes the cloud to begin to collapse inward, forming a **protostar**
- M8, the Lagoon Nebula, is in the early stages of star forming
Stellar birth begins in vast molecular clouds in space. Gravity causes the cloud to begin to collapse inward, forming a protostar. M8, the Lagoon Nebula, is in the early stages of star forming.
Stellar birth begins in vast molecular clouds in space. Gravity causes the cloud to begin to collapse inward, forming a protostar. M8, the Lagoon Nebula, is in the early stages of star forming.
M16 (Eagle Nebula)
Molecular clouds are the parents of the stars, and often give birth to many stars, not just one.

As stars are born, their light and winds blow out surrounding nebula, making it luminous.

Nice example of a well developed cluster is M11 -- the Wild Duck Cluster.
Molecular clouds are the parents of the stars, and often give birth to many stars, not just one. As stars are born, their light and winds blow out surrounding nebula, making it luminous. Nice example of a well-developed cluster is M11 -- the Wild Duck Cluster.
• Stars often form in pairs, and orbit each other the same way planets orbit our Sun.

• These are called binary stars.

• Roughly 50% of all the stars you see in the sky are actually binaries!

• It often takes a telescope to see the two stars.
Stars often form in pairs and orbit each other in the same way planets orbit our Sun. These are called binary stars. Roughly 50% of all the stars you see in the sky are actually binaries! It often takes a telescope to see the two stars.
Stars often form in pairs and orbit each other the same way planets orbit our Sun. These are called binary stars.

Roughly 50% of all the stars you see in the sky are actually binaries!

It often takes a telescope to see the two stars.
Near the ends of their lives, the outer layers of the star are shed and become **planetary nebulae**

They have **nothing to do with planets** — they look like planets in the telescope!

Short lived, fading after only 10,000 years

Famous example: M57 -- the Ring Nebula in Lyra
Near the ends of their lives, the outer layers of the star are shed and become planetary nebulae.

They have nothing to do with planets — they look like planets in the telescope!

Short lived, fading after only 10,000 years.

Famous example: M57 -- the Ring Nebula in Lyra.
Near the ends of their lives, the outer layers of the star are shed and become planetary nebulae.

They have nothing to do with planets — they look like planets in the telescope!

Short lived, fading after only 10,000 years.

Famous example: M57 -- the Ring Nebula in Lyra.
Near the ends of their lives, the outer layers of the star are shed and become planetary nebulae. They have nothing to do with planets—they look like planets in the telescope! Short lived, fading after only 10,000 years. Famous example: M57—the Ring Nebula in Lyra.
After the planetary nebula phase, nuclear burning slows and gravity begins to win.

Star collapses, but gravity can’t compress the atoms beyond a certain point (this is called “degeneracy pressure”).

Final remnant is about the size of the Earth.

White Dwarf (the Sun will become one of these)
• For **massive stars**, the end of its life is catastrophic: a **supernova explosion**!

• Luminosity of explosion is **10 billion times** the luminosity of the Sun (a supernova can outshine its parent galaxy for a short time)

• The explosion distributes the heavy elements out into the galaxy (gold, uranium, etc)
Supernova Remnant

• The explosion creates a supernova remnant!
Supernova Remnants

SN1054 (Crab Nebula)

SN 185

SN 1572 (Tycho’s SN)

SN 1604 (Kepler’s SN)

Cygnus Loop (Veil Nebula)

N63A (LMC)
Supernova Remnants

SN1054 (Crab Nebula)

Cygnus Loop (Veil Nebula)

SN 185

N63A (LMC)

SN 1604 (Kepler's SN)

SN 1572 (Tycho's SN)
Supernovae destroy most of the outer layers of a star, but compress the core to tiny size.

Most supernovae core become neutron stars.

A neutron star has a diameter of only 10 kilometers. It will fit between Kemmerer and Fossil Butte!
A star shrunk to tiny size!

- Supernovae destroy most of the outer layers of a star, but compress the core to tiny size.
- Most supernovae core become neutron stars.
- A neutron star has a diameter of only 10 kilometers. It will fit between Kemmerer and Fossil Butte!
Pulsars

• Emission along the magnetic axis (no one knows how!)

• If neutron star is spinning, the emission axis points in different directions at different times

• If you are in the right place, the emission sweeps across you
Pulsar Discovery

• First pulsar discovery made by Jocelyn Bell at Cambridge in 1967

• Didn’t initially know it was a neutron star. Regular signals from outer space – aliens?

• Originally dubbed LGM-1, now known as PSR 1919+21, or CP 1919 (in the constellation Aquila)

• 1968: Tommy Gold and Franco Pacini proposed pulsars to be rotating neutron stars
Pulsar Discovery

• First pulsar discovery made by Jocelyn Bell at Cambridge in 1967

• Didn’t initially know it was a neutron star. Regular signals from outer space – aliens?

• Originally dubbed LGM-1, now known as PSR 1919+21, or CP 1919 (in the constellation Aquila)

• 1968: Tommy Gold and Franco Pacini proposed pulsars to be rotating neutron stars
Once we decided pulsars were neutron stars, we wanted to find more!

Look in supernova remnants!

Crab Pulsar soon discovered, with a 0.33 second rotation period
Kinds of Pulsars

• Most known pulsars are radio pulsars – you can only see them in radio pulses

• The Crab radiates in radio waves, x-rays, and optical light!

• The Songs of the Crab
Black hole observer’s report

Image credit: M. Larson
Looking for Black Holes

• How do we detect black holes in the galaxy?
 • Look for their interactions with other objects!
 • Look for events that require high energy or strong gravity!
Candidate: Cygnus X-1

- Binary x-ray source, 8.8 mag optical blue supergiant
- Invisible companion is a 7-10 solar mass black hole – the closest black hole candidate to Earth!
Last Thoughts...

- Carl Sagan once wrote (*Cosmos*): “The desire to be connected with the Cosmos reflects a profound reality: we are connected. Not in trivial ways... but in the deepest ways.”

- In the lives of stars we see reflections of our own lives on Earth — stars are born, live long and lustrous lives, and eventually die, returning once again to the Cosmos from whence they came.