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ABSTRACT
The Galactic massive black hole (MBH), with a mass of M• = 3.6 × 106 M�, is the closest

known MBH, at a distance of only 8 kpc. The proximity of this MBH makes it possible to

observe gravitational waves (GWs) from stars with periapse in the observational frequency

window of the Laser Interferometer Space Antenna (LISA). This is possible even if the orbit

of the star is very eccentric, so that the orbital frequency is many orders of magnitude below

the LISA frequency window, as suggested by Rubbo, Holley-Bockelmann & Finn (2006).

Here we give an analytical estimate of the detection rate of such GW bursts. The burst rate

is critically sensitive to the inner cut-off of the stellar density profile. Our model accounts for

mass segregation and for the physics determining the inner radius of the cusp, such as stellar

collisions, energy dissipation by GW emission and consequences of the finite number of stars.

We find that stellar BHs have a burst rate of the order of 1 yr−1, while the rate is of the order of

�0.1 yr−1 for main-sequence stars and white dwarfs. These analytical estimates are supported

by a series of Monte Carlo samplings of the expected distribution of stars around the Galactic

MBH, which yield the full probability distribution for the rates. We estimate that no burst will

be observable from the Virgo cluster.

Key words: black hole physics – gravitational waves – stellar dynamics – Galaxy: centre.

1 I N T RO D U C T I O N

When a star comes near the event horizon of a massive black hole

(MBH) with mass M• � few times 106 M�, it emits gravitational

waves (GWs) with frequencies observable by the planned Laser
Interferometer Space Antenna (LISA). Such extreme mass ratio in-

spiral sources (EMRIs) can be observed by LISA to cosmological

distances, provided that they spend their entire orbit emitting GWs

in the LISA frequency band (Finn & Thorne 2000; Barack & Cutler

2004b,a; Gair et al. 2004; Glampedakis 2005). For an EMRI to be

in the LISA band, the orbital period of the star has to be shorter than

P ∼ 104 s. The formation mechanism for EMRIs begins when a

star that is initially not strongly bound to the MBH is scattered to

a highly eccentric orbit, such that its periapse comes close to the

Schwarzschild radius rS of the MBH. The star loses energy to GWs

on every orbit, slowly spiralling inward. This process may eventu-

ally lead to a closely bound orbit that is observable by LISA. Inspiral

is often frustrated by scattering with other field stars (Alexander

& Hopman 2003; Hopman & Alexander 2005), and the rate at

which stars manage to spiral in successfully is rather low, of the

order of 0.1 Myr−1 per Galaxy for stellar BHs (Hils & Bender 1995;

Sigurdsson & Rees 1997; Miralda-Escudé & Gould 2000; Freitag

�E-mail: clovis@strw.leidenuniv.nl

2001; Ivanov 2002; Freitag 2003; Hopman & Alexander 2006a,b;

see Hopman 2006, for a review). However, due to the large distances

(∼1 Gpc) to which EMRIs can be observed, the integrated rate over

the volume makes these a very promising target for LISA.

Our own Galactic Centre (GC) contains an MBH of M• = (3.6 ±
0.3) × 106 M� (Schödel et al. 2002; Alexander 2005; Eisenhauer

et al. 2005), in the range of MBH masses that will be probed by

LISA. Since the Galactic MBH is very close, d ≈ 8 kpc (Eisenhauer

et al. 2005), the stars near the MBH can be studied in great detail

(Schödel et al. 2002; Genzel et al. 2003; Ghez et al. 2003; Schödel

et al. 2003; Ghez et al. 2005). The Galactic MBH and its stellar

cluster are therefore very useful as a prototype for extragalactic

nuclei, in particular in the study of EMRIs. For a review of stellar

processes near MBHs, see Alexander (2005).

It is unclear whether our own GC can be observed as a continu-

ous source of GWs. From the very low event rates this appears to

be highly unlikely, but due to its proximity, waves with lower fre-

quencies can be observed in the GC, and it was suggested by Freitag

(2003) that a number of low-mass main-sequence (MS) stars may

be observed in our own GC.

Another possibility was considered by Rubbo et al. (2006, here-

after RHBF06), who showed that even a single fly-by of a star near

the MBH would be observable by LISA if it is sufficiently close,

and they estimated that the event rate is high enough (∼15 yr−1)

that several detectable fly-bys would be observable during the LISA
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mission. The prospect of observing the Galactic MBH as a GW

burster is very exciting: it would imply detection of GWs from an

object that has been extensively studied in many electromagnetic

wavelengths. Furthermore, as we point out in this paper, GW bursts

are caused by stars very close to the MBH, and thus probe a region

near the MBH which is not accessible observationally in a direct

way by other means.

RHBF06 used a single-mass stellar model to study the GW burst

rate. The rate is dominated by nearby stars, raising the question what

determines the inner cut-off of the stellar cusp; RHBF06 assumed

that the cusp extends all the way to the MBH. Here we re-address the

event rate of such GW bursts in the GC. We consider the treatment

of a multimass system, and account for the inner cut-off of the cusp.

This paper is organized as follows. In Section 2 we derive the

minimal periapse a star needs to have to give an observable burst of

GWs in the GC. In Section 3 we give an analytical expression for

the event rate of GW bursts. The rate is dominated by stars at very

close distances from the MBH, and we discuss several processes

which may determine the inner cut-off of the density profile. Our

analytical model is complemented by Monte Carlo realizations of

stellar cusps (Section 4), which allow an accurate treatment of rare

events where a single star produces a large number of bursts. The

Monte Carlo samplings also yield the probability distribution of

the event rates, in addition to the average event rate. In Section 5

we present our resulting rates, and in Section 6 we discuss and

summarize our results.

2 D E T E C T I O N O F G R AV I TAT I O NA L WAV E S
F RO M T H E G A L AC T I C C E N T R E

For f < mHz, a good approximation of the sensitivity curve of LISA
(Larson 2001) is given by

S( f ) = S0

(
f

Hz

)−4 (
L

5 × 1011 cm

)−1/2

( f < mHz), (1)

where S0 = 6.16 × 10−51 Hz−1, f is the frequency of a GW and L is

the arm length of LISA (Larson 2001).

The signal-to-noise ratio (S/N), ρ, can be approximated by (Finn

& Thorne 2000, equation 2.2)

ρ ≈ hN 1/2
f

f 1/2 S1/2
; (2)

here N f is the number of cycles spent at a certain frequency f; for

GW bursts N f = 1. Furthermore, h is the strain, which is here

approximated by the quadrupole estimate of a circular orbit (Finn

& Thorne 2000, equation 3.13)

h = 2.28 × 10−16

(
d

8 kpc

)−1

×
(

m

M�

)(
M•

3.6 × 106 M�

)2/3 (
f

Hz

)2/3

. (3)

From equations (1)–(3), the minimal frequency necessary to mea-

sure a burst is then

fburst = 4.3 × 10−5 Hz ρ6/13

(
d

8 kpc

)6/13

×
(

m

M�

)−6/13 (
M•

3.6 × 106 M�

)−4/13

, (4)

where f = √
G M/r 3

p is now the orbital frequency at periapse of

an eccentric orbit. The corresponding periapse is(
r burst

p

rS

)
= 60 ρ−4/13

(
d

8 kpc

)−4/13

×
(

m

M�

)4/13 (
M•

3.6 × 106 M�

)−6/13

, (5)

or rburst
p ≈ 2.1 × 10−5 pc. The corresponding angular momentum is(

Jburst

JLSO

)2

= 7.5 ρ−4/13

(
d

8 kpc

)−4/13 (
m

M�

)4/13

×
(

M•
3.6 × 106 M�

)−6/13 (
2 − r burst

p

a

)
, (6)

where J2
LSO = (4GM•/c)2 defines the last stable orbit.

The event rate (equation 8) is approximately proportional to J2
burst.

In this model, we note that neglecting the noise from Galactic white

dwarf (WD) binaries can be justified by the fact that the noise is

much smaller than the instrumental noise at f burst = 3 × 10−5 Hz

(Bender & Hils 1997). At higher frequencies, 2 × 10−4 Hz � f �
3 × 10−3 Hz the S/N will increase in spite of the presence of Galactic

noise, because of the larger GW amplitude at those frequencies.

3 A N A NA LY T I C A L M O D E L F O R T H E
G R AV I TAT I O NA L WAV E BU R S T R AT E
I N T H E G A L AC T I C C E N T R E

3.1 The gravitational wave burst rate in an isotropic
distribution

The distribution of stars near an MBH is an important problem

in stellar dynamics, and has been studied since the early 1970s

(Peebles 1972). The MBH dominates the dynamics within the ra-

dius of influence, rh = GM•/σ 2, where σ is the stellar velocity

dispersion far away from the MBH. For the GC, rh ≈ 2 pc (Hopman

& Alexander 2006a). It was shown by Bahcall & Wolf (1976) that

within rh, the density distribution of a single-mass population of

stars is very well approximated by a power law, n(r) ∝ r−α , with

α = 7/4. These results, which were obtained by solving the

Fokker–Planck equation in energy space, were later confirmed by

N-body simulations (Baumgardt, Makino & Ebisuzaki 2004a; Preto,

Merritt & Spurzem 2004) and Monte Carlo simulations (Freitag &

Benz 2002).

Bahcall & Wolf (1977) studied the distribution of stars with dif-

ferent masses near an MBH, and showed that mass segregation leads

to steeper distributions of the more massive species which sink to

the centre due to dynamical friction. These results were confirmed

and extended by Freitag, Amaro-Seoane & Kalogera (2006) and

Hopman & Alexander (2006b) for a much wider range of masses.

For simplicity we approximate the distributions as power laws,

with different exponents for different species (symbolized by ‘M’),

such that nM (r ) ∝ r−αM . The values of αM will be discussed in

Section 3.2.

We assume an isotropic density profile; the role of modifica-

tions of the distribution function (DF) by the loss-cone will be dis-

cussed in Section 3.3.5. For such a distribution, the number of stars

n(a, dJ2) da dJ2 in an element (a, a + da), (J2, J2 + dJ2) is given

by

n(a, J 2)da dJ 2 = (3 − αM )
CM Nh

rh

(
a

rh

)2−αM
1

J 2
c (a)

da dJ 2, (7)
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where Jc(a) = √
G M•a is the circular angular momentum, Nh is the

number of MS stars within rh and CM Nh the total number of stars

of type M within rh (so that for MS stars CMS ≡ 1). The rate per

unit of logarithmic of the semimajor axis at which stars of species

M have a bursting interaction with the MBH is then given by

a
d�M

da
= (3 − αM )

CM Nh

P(a)

(
a

rh

)3−αM
[

J 2
burst(a) − J 2

LSO

J 2
c (a)

]
, (8)

where P(a) = 2π(a3/GM•)1/2 is the period. For MS stars, the term

J2
LSO in equation (8) should be replaced with the tidal loss-cone,

J2
t = 2GM• rt. Here rt = (M•/M�)1/3 R� is the tidal radius, where

a star is disrupted by the tidal force of the MBH.

Equation (8) gives an analytical estimate of the GW burst rate in

our GC, assuming that the distribution function can be approximated

as being an isotropic power-law distribution, with different powers

for different species. It is only valid within the radius of influence

rh. Since the event rate is entirely dominated by stars very close to

the MBH (see Fig. 3), we neglect contributions to the GW burst rate

from stars with a > rh. From equation (8) it can be seen that for the

relevant values of α > 1/2, the GW burst rate formally diverges for

nearby stars (RHBF06): setting JLSO → 0, the rate is proportional

to ad�M/da ∝ a1/2−α .

Finally, we note that RHBF06 make a number of cuts in phase

space; either these cuts are made here implicitly, or they do not affect

our results.

3.2 The stellar distribution in the Galactic Centre

The stellar cluster in the GC has been observed in the infrared in

much detail. It has been shown (Alexander 1999; Genzel et al. 2003;

Alexander 2005) that the stars in the GC are distributed in a cusp

with profile ρ ∝ r−1.4 consistent with the predictions by Bahcall

& Wolf (1976, 1977), although it is important to note that only

the most luminous stars can be observed, and that the observations

are therefore strongly biased. The stellar population at 1–100 pc

is consistent with a model of continuous star formation (Serabyn

& Morris 1996; Figer et al. 2004). Within the radius of influence

rh = 2 pc, Genzel et al. (2003) finds that there is a total mass

Mtot = 1.7 × 106 M� in stars.

Not much is known observationally about the inner ∼0.01 pc of

the GC. There are a number of B-stars (known as the ‘S cluster’) at

that distance, which provide a challenge for star formation theories,

but it is not known whether these stars are representative for the

dimmer stars present there: it is more likely that they are the result

of tidal binary disruptions by the MBH (Gould & Quillen 2003;

Perets, Hopman & Alexander 2007). The S-stars can also be used to

probe the enclosed dark mass. This is how the total mass of the MBH,

M• = 3.6 × 106 M� (Eisenhauer et al. 2005) can be determined,

but in principle the orbits of the S-stars can be used to constrain the

nature of the extended mass by looking for deviations of Keplerian

motion: if, for example, a cluster of stellar BHs is present, the orbits

of the S-stars should precess. To date, searches for deviations from

Keplerian motion do not lead to relevant constraints (Mouawad et al.

2005).

By lack of direct observations of the stellar content of the inner

region of the Galaxy, we resort to theoretical models for mass seg-

regation. Such models were recently made by Freitag et al. (2006)

and Hopman & Alexander (2006b), and show that stellar BHs have

a much steeper cusp than the other species.

We consider four distinct species of stars: MS stars, WDs, neutron

stars (NSs) and stellar BHs, with MMS = 0.5 M�, MWD = 0.6 M�,

MNS = 1.4 M�, MBH = 10 M�. We assume that the enclosed num-

ber of MS stars within the radius of influence at rh = 2 pc is Nh =
3.4 × 106, and that the number of compact remnants are equal to that

resulting from Fokker–Planck calculations by Hopman & Alexander

(2006a), who found CMS = 1, CWD = 0.14, CNS = 9 × 10−3,

CBH = 6 × 10−3. These are the number fractions of all stars within

1 pc, after mass segregation; the fractions of the unbound stars are

approximately CMS = 1, CWD = 0.1, CNS = 0.01, CBH = 10−3, cor-

responding to a model of continuous star formation (e.g. Alexander

2005). We note that we ignore the effect of kicks for NSs. Since we

show that NSs are unlikely to be observed as GW bursts, this does

not significantly change our conclusions. For the slopes, Hopman

& Alexander (2006b) found αMS = 1.4, αWD = 1.4, αNS = 1.5,

αBH = 2. These slopes are all quite different from those assumed by

RHBF06, who assumed α = 1.75 for all species.

3.3 The inner region of the stellar cusp

The rate of GW bursts is dominated by stars very close to the MBH.

It is therefore important to estimate to which distance the cusp con-

tinues. Here we consider a number of processes that can determine

the inner edge of the cusp.

3.3.1 Finite number effects

Current models of stellar systems near MBHs rely mainly on sta-

tistical approaches such as Fokker–Planck methods; N-body simu-

lations can only be performed for small systems with intermediate-

mass black holes (IMBHs) of masses M• ∼ 103 M� (Baumgardt,

Makino & Ebisuzaki 2004a,b; Preto et al. 2004). In particular, the

Bahcall & Wolf (1976, 1977) solutions which first predicted the

slope of the stellar cusp, can in principle extend to any inner radius

if there is no physical mechanism that provides a cut-off (such as

stellar collisions or tidal disruption). In reality, there is only a finite

number of stars; this implies that even if no inner cut-off of the cusp

is provided by a physical mechanism that destroys the stars, there

is an inner radius beyond which no stars are expected. Statistically,

the cusp runs out at1

r1,M = (CM Nh)−1/(3−αM )rh. (9)

Using rh = 2 pc, this gives for the favoured model r1,MS = 2 ×
10−4 pc, r1,WD = 6 × 10−4 pc, r1,NS = 2 × 10−3 pc and r1,BH = 1 ×
10−4 pc.

It is highly unlikely that there is a star in the GC with semimajor

axis a 
 r1,M during a few years of observations. We therefore ne-

glect in our analytical estimate contributions from such rare cases.

However, we do explore this possibility in the Monte Carlo sam-

plings presented in Section 4. These samplings confirm that the

probability of the presence of a star within r1,M is low. Even though

such a star would contribute a large number of bursts, it is unlikely

to be of importance in the GC.

3.3.2 Hydrodynamical collisions

Close to an MBH, the number density and velocity dispersions be-

come very large, and stars will collide within their lifetimes (Frank

& Rees 1976; Cohn & Kulsrud 1978; Murphy, Cohn & Durisen

1 This expression is also given in Hopman & Alexander (2006a), but with

an error in the sign of the exponent.
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1991). The rate �coll at which stars with radius R� at a distance rh

from the MBH have grazing collisions can be estimated as

�coll = nv� = 3 − α

4π

Nh

r 3
h

(
r

rh

)−α (
G M•

r

)1/2

πR2
� , (10)

where � = πR2
� is the cross-section for a grazing collision, when

the relative velocity is significantly larger than the escape velocity

from the surface of the star.

Studies by (Freitag & Benz 2002, 2005) show a single grazing

collision is unlikely to disrupt a star, but that rather Ncoll ∼ 20–30

collisions are required for disruption (Freitag et al. 2006). This im-

plies that stars are disrupted by collisions within a Hubble time if

their distance from the MBH is smaller than

rcoll = 3 × 10−3 pc

(
Ncoll

30

)1/2 (
R�

R�

)
, (11)

where it was assumed that α = 3/2, as is approximately the case for

MS stars.

Although this estimate is clearly not very precise, it is unlikely

that the cusp for MS stars continues much closer to the MBH than

rcoll, since collisions become very frequent and with higher impact

velocities. For the preferred model we assume rcoll as the inner cut-

off of the cusp for MS stars. We do not consider collisions between

other stellar species.

3.3.3 Gravitational wave inspiral

GW emission plays a double role: on one hand the GWs can be

detected by LISA, but on the other they also change the dynamics

close to the MBH, since the star emitting the GW loses orbital en-

ergy, and spirals in. Close to the MBH, stars spiral in faster than they

are replenished by other stars. This region of phase space is there-

fore typically empty, because any bursting star would be quickly

accreted by the MBH.

If rp 
 a, the inspiral time is approximately given by (Peters

1964)

t0(rp, a) = 2π
√

G M•a

�EGW(rp, a)
, (12)

where

�EGW(rp, a) = 2π

5
√

2
f (e)

M�c2

M•

(
rp

rS

)−7/2

(13)

and f (e) ≈ 2.2. If this time-scale at rp = rburst
p is much smaller

than the time-scale tJ (rp, a) ∼ (rp/a)tr for two-body scattering to

change the angular momentum by an order of unity, stars with rp <

rburst
p spiral in much faster than they are replenished. Solving

tJ (rburst
p , a) = t0(rburst

p , a) for a gives an inner cut-off

aGW = 1.9 × 10−4 pc

(
m

M�

)2/13 (
d

8 kpc

)20/39 (
ρ

5

)20/39

, (14)

where a relaxation time of tr = 109 yr was assumed.

3.3.4 Kicks out of the cusp

An important assumption that is routinely made in stellar dynamics

is that the rate at which stars exchange energy and angular momen-

tum is dominated by small-angle encounters (e.g. Chandrasekhar

1943; Binney & Tremaine 1987). This is justified by comparing

the large-angle scattering time-scale, tLA ≈ [nv(GM�/v2)2]−1, to

the relaxation time tr. The time-scale for large-angle scattering

by a single strong encounter is larger than the relaxation time

(where many small encounters add up to a large angle) by a factor

tLA/tr ∼ ln 	, where ln 	 is the Coulomb logarithm; close to an

MBH, 	 ∼ M•/M� (Bahcall & Wolf 1976).

In spite of this, large-angle scattering may play an important

role in the ejection of stars out of the cusp (Lin & Tremaine 1980;

Baumgardt et al. 2004a). Whether the rate of ejections out of the

cusp is larger than the rate at which stars are swallowed by the MBH

may depend on the size of the system: Lin & Tremaine (1980) and

Baumgardt et al. (2004a) find that the ejection rate is larger for

IMBHs of M• ∼ 103 M�, but the swallow rate is much higher for

MBHs (Freitag et al. 2006).

Even if the ejection rate is larger than the merger rate, in all

cases the rate at which stars are replenished by diffusion in energy

space is larger than the ejection rate by a factor ln 	 (Bahcall &

Wolf 1977; Lin & Tremaine 1980). Ejections can therefore never

deplete the inner region of the cusp, and need not be considered for

the purposes of this paper. We note that Baumgardt et al. (2004a)

found that all stellar BHs are ejected, but this cannot happen in a

galactic nucleus where these objects are constantly replenished by

mass segregation from larger radii.

3.3.5 The role of the loss-cone

We assume an isotropic velocity distribution for the stars, leading to

the DF n(a, J2) given in equation (7). We do not consider stars in the

region J < JLSO, which is the ‘loss-cone’; loss-cone theory shows

that so close to the MBH, there are no stars in this region in phase

space, because any star will be immediately removed (Lightman &

Shapiro 1977; Cohn & Kulsrud 1978).

In reality, there will be a smooth transition from the empty re-

gion of the loss-cone to the region far away from the loss-cone

(large angular momenta). Lightman & Shapiro (1977) find that

close to the loss-cone, there is a logarithmic depletion of stars.

Taking this factor into account leads to a suppression of the GW

burst rates by a factor of the order of ∼3 compared to the re-

sults we present here. On the other hand, resonant relaxation

(Rauch & Tremaine 1996) may replenish some stars to this region

(Rauch & Ingalls 1998), although the effect will be not very large

due to general relativistic precession, which destroys the resonant

relaxation.

In this paper we do not consider any modification of the DF by

the presence of the loss-cone, but note that this approach may be

somewhat optimistic.

3.4 Main model

To summarize, the method to compute the GW burst rate is as fol-

lows. Four species of stars (MS, WD, NS, BH) are considered, all

with their own mass m/M� = (0.5, 0.6, 1.4, 10), number normal-

ization CM = (1, 0.14, 0.009, 6 × 10−3) at rh = 2 pc, slope αM , inner

radius rin,M and loss-cone Jlc = max(JLSO, Jt). The total number of

MS stars (CM = 1) within the cusp is Nh = 3.4 × 106. These values

are used in equation (8); the rate �M is then integrated to find the

total GW burst rate for each species.

For the model which is regarded to reflect the stellar population

in the GC best, the following values are assumed. For the slopes,

αM = (1.4, 1.4, 1.5, 2.0); for the inner radius, rin = max(rcoll, r1,

aGW), we found rin,MS = 3 × 10−3 pc (collisions), rin,WD = 6 ×
10−4 pc, rin,NS = 2 × 10−3 pc (finite number effects) and rin,BH = 3 ×
10−4 pc (GW inspiral).
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We consider the parameters assumed here to be representa-

tive for the GC. There is considerable uncertainty in some of the

assumptions, in particular in the abundance and masses (and possi-

ble distribution of masses) of the stellar BHs. However, it was shown

in dynamical simulations by Freitag et al. (2006) that after 10 Gyr

the number of stellar BHs close to the MBH was comparable for

several different initial mass functions. Results for other choices of

the parameters can easily be evaluated using the expressions in the

previous sections.

4 M O N T E C A R L O R E A L I Z AT I O N S O F
S T E L L A R C U S P S

The analytical method described in the previous section is useful

to obtain an estimate of the average burst rate. However, it discards

rare events where a single star comes very close to the MBH and

has a large number of bursts per year. It also does not give infor-

mation on the distribution of the burst rate. In order to obtain this

information we complemented our analytical estimate by a Monte

Carlo approach, in which we produce a large number of realizations

of the models discussed in the previous section. This gives us the

cumulative probability P(>�) that the event rate is higher than �.

In the Monte Carlo samplings, we do not need to explicitly include

a cut-off at small radii to account for statistical depletion. Stars with

(1 − e)tr > t0(e, a) are discarded (see equation 3.3.3). Other cuts

are identical to those made in the analytical approach.

One example of a realization of the stellar cusp is shown in Fig. 1.

Figure 1. Realization of the main model for the stellar cusp, with 1 − e on

the horizontal axis and the semimajor axis on the vertical axis (or period on

the right-hand vertical axis). The lightest dots represent MS stars, then WDs,

NSs, and finally the black dots represent BHs, with numbers and slopes as

described in the main model. The black line with hatching demarcates the last

stable orbit. The dotted blue lines give the GW inspiralling time (equation 12)

for the MS stars. The solid grey line indicates the ‘burst region’ for MS stars

(with S/N = 5). The solid black line above it is for stellar BHs. The dashed

line is the tidal disruption radius for MS stars. The grey dot–dashed line

shows t0 = (1 − e)tr for MS stars while the black one is for stellar BHs.

Below these lines, depletion by GW inspiral should occur. The region with

P < 1 yr, where most bursting stars should be, is almost entirely depleted

due to the finite number effect.

5 R E S U LT S

A number of different possibilities were considered for the slopes

and inner cut-offs of the respective stellar populations. The resulting

GW burst rates for these models are summarized in Table 1.

For our main model, we find that GW bursts are unlikely to be

observed in the GC for MS stars (�MS ∼ 0.1 yr−1), for WDs (�WD

∼ 0.1 yr−1) and for NSs (�NS ∼ 0.004 yr−1). Our burst rate for MSs

is much lower than the �MS ∼ 12 yr−1 rate estimated by RHBF06;

the main reason for the difference is the cut-off due to collisions.

Our rates for WDs and NSs are also lower than those found by

RHBF06 (who estimated �WD ∼ 3 yr−1 and �NS ∼ 0.1 yr−1); here

the difference is probably caused mainly by the different density

profile, and the fact that the cusp runs out of stars at small radii from

the MBH. On the other hand, we find a higher rate of BH bursts,

(�BH ∼ 1 yr−1), which is the result of the steeper density profile we

assumed, caused by mass segregation (Freitag et al. 2006; Hopman

& Alexander 2006b). The inner radius for BHs was determined by

GW inspiral in this case (Section 3.3.3).

The cumulative probability to detect more than a certain number

of bursts per year can be determined with Monte Carlo sampling

(Section 4). It consists of several factors, including the probability

that in spite of the finite number effect a star has a very short period

in a certain realization. In this latter case there is a large number of

correlated bursts, so that the distribution is not Poissonian. We show

the results for the main model in Fig. 2. The average rates are in good

agreement with our analytical model. Smaller differences are that for

WDs and NSs, the Monte Carlo rates are slightly higher because of

rare events excluded in the analytical model, while for BHs the rates

are slightly lower, due to a small difference in the criterion for GW

inspiral. From the figure it can be confirmed that the probability to

observe even one single burst for MSs, WDs and NSs is negligible,

but there is some chance to observe several GW bursts from BHs.

The probability that the rate of observed BH bursts per year exceeds

1 is P(>1 yr−1) ≈ 20 per cent. For illustration purposes, we show

in Fig. 1 an example of a realization of the main model.

To probe the sensitivity of the GW burst rate to the assumptions,

a number of other possibilities are considered explicitly. We stress
that these models lack in realism; we consider them with the purpose
of probing how sensitive our results are to the assumptions made.

First, consider the possibility that there is mass segregation, but

an inner cut-off of only amin = 3 × 10−5 pc for all stars (this is

approximately where bursting sources become continuous sources,

see equation 5 and RHBF06). This increases the rate considerably

for all species. The GW burst rate is plotted in Fig. 3. From this

figure it can also be seen what the event rates for the main model

are, by considering the appropriate cut-off for each species.

Alternatively, we consider the case that there is an inner cut-off

equal for all species similar to that of the main model, but that the

slope is αM = 1.75 for all species, as would be the case for a relaxed,

single-mass population.2 We used a normalization (CMS : CWD : CNS :

CBH) = (1 : 0.1 : 0.01 : 1 × 10−3) here. This example would present

some realism if all stars are of similar mass and in particular if the

typical mass of stellar BHs would be of the order of MBH ∼ 1 M�,

or if the number of stellar BHs would be much smaller than assumed

here (in the latter case the burst rate of the BHs would of course be

2 We note, however, that in absence of massive bodies such as stellar BHs,

significant relaxational evolution is not to be expected over a Hubble time

(Freitag et al. 2006). Without significant relaxation, the density profile of all

objects is probably not steeper than ρ ∝ r−1.5.
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Table 1. Event rates for a number of different stellar species and slopes. For all cases the required S/N for detection was assumed to be ρ = 5. The first four

entries give the favoured model, which accounts for mass segregation according to the results by Hopman & Alexander (2006b), and has an inner cut-off of

the cusp due to stellar collisions or finite number effects. The following four entries give the same model, but with equal inner cut-offs rin = 3 × 10−5 pc for

all stars. The next eight entries are without mass segregation, but with an inner cut-off; this could be appropriate if there are no SBHs (although they do appear

in the table), in which case mass segregation would be much less extreme. The slopes presented are α = 1.75 and 1.5. The last four entries also have the same

inner cut-off, and an equal slope α = 1.75 as appropriate for a single-mass cusp, similar to what was assumed by RHBF06.

Model Star m CM αM ain Reason for cut-off �M

(M�) (pc) (yr−1)

Mass segregation, cut-off (main model) MS 0.5 1.0 1.4 3 × 10−3 Collisions 0.1

WD 0.6 0.14 1.4 6 × 10−4 Finite number 0.09

NS 1.4 0.009 1.5 2 × 10−3 Finite number 4 × 10−3

SBH 10 6 × 10−3 2.0 3 × 10−4 GW inspiral 1.5

Mass segregation, no cut-off MS 0.5 1.0 1.4 3 × 10−5 – 6

WD 0.6 0.14 1.4 3 × 10−5 – 1.2

NS 1.4 0.009 1.5 3 × 10−5 – 0.2

SBH 10 6 × 10−3 2.0 3 × 10−5 – 30

No mass segregation, cut-off MS 0.5 1.0 1.75 3 × 10−3 Collisions 0.5

WD 0.6 0.1 1.75 1 × 10−4 GW inspiral 4

NS 1.4 0.01 1.75 5 × 10−4 Finite number 0.1

SBH 10 1 × 10−3 1.75 3 × 10−3 Finite number 2 × 10−3

No mass segregation, cut-off MS 0.5 1.0 1.5 3 × 10−3 Collisions 0.16

WD 0.6 0.1 1.5 4 × 10−4 Finite number 0.17

NS 1.4 0.01 1.5 2 × 10−3 Finite number 0.005

SBH 10 1 × 10−3 1.5 9 × 10−3 Finite number 2 × 10−4

No mass segregation, no cut-off MS 0.5 1.0 1.75 3 × 10−5 – 280

WD 0.6 0.1 1.75 3 × 10−5 – 42

NS 1.4 0.01 1.75 3 × 10−5 – 5

SBH 10 1 × 10−3 1.75 3 × 10−5 – 0.7

Figure 2. Distribution of burst rates for 40 000 Monte Carlo realizations. We

plot the probability for the burst rate of each stellar species to be larger than

a value � as a function of �. Each cusp realization consists of Nh = 3.4 ×
106 particles distributed around an MBH according to the parameters of the

main model, such as illustrated in Fig. 1. Stars on plunge orbits or with

(1 − e)tr > t0(rp, a) (see Section 3.3.3) are discarded. We also remove MS

stars with periapse distance smaller than the tidal disruption radius rt �
2 × 10−6 pc or semimajor axis smaller than the collision radius rcoll = 3 ×
10−3 pc. The dotted line indicate the rate distribution for MS stars if there

were no collisional depletion (rcoll = 0). The triangles above the horizontal

axis indicate the rates averaged over all realizations. Notice that, except for

MS stars, they are much higher than the median rates.

Figure 3. The rate ad�M/da for the preferred model with (αMS, αWD, αNS,

αBH) = (1.4, 1.4, 1.5, 2) and (CMS, CWD, CNS, CBH) = (1, 0.14, 0.009, 6 ×
10−3). The required S/N for detection was assumed to be ρ = 5. The lines

are extended for the case where there is no inner cut-off to the distribution

function. In our main model, the rate does have an inner cut-off, see Table 1.

lower). In this case, the GW burst rate would be dominated by WDs,

with a rate of the order of �WD ∼ 4 yr−1. Interestingly, the cut-offs

for this model are determined by different mechanism than for our

main model (see Table 1). We also consider the same model, but

with all slopes equal to α = 1.5. This is comparable to the slope of

the observed population of stars in the GC (Genzel et al. 2003); this

population consists of young, massive stars and luminous giants,
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and is not necessarily related to the populations that are of interest

for our purposes. Since this slope implies that there are even less

stars very close to the MBH, the rates are much lower.

Finally, equation (8) was applied to model parameters similar to

those assumed by RHBF06, that is, without mass segregation and

with a fixed, very small inner cut-off. In this case an event rate is

found that is more than an order of magnitude above that found by

RHBF06. It is unclear what causes the discrepancy.

6 S U M M A RY A N D D I S C U S S I O N

When stars come very close (rp � 60rS, see equation 5) to the MBH

in our GC, they emit a burst of GWs that could be observable by

LISA (RHBF06). In this paper an analytical estimate for the burst

rate is given. The estimate includes physics that was not considered

by RHBF06, in particular mass segregation and processes which

determine the inner cut-off of the stellar distribution function. Mass

segregation mostly leads to different contributions from different

species. However, since the event rate is dominated by stars very near

the MBH (equation 8), the inner cut-of leads to a strong suppression

of the GW burst rate. We find that only stellar BHs have a reasonable

chance of being observed as bursting sources, with a rate of the order

of � ∼ 1 yr−1 for ρ = 5.

The stellar distribution function in the inner 0.01 pc is not known

in the GC, and the results presented here rely on theoretical esti-

mates, rather than on observations. The role of collisions on the

inner structure of the cusp is still poorly known, and if the inner

cut-off would be considerably smaller than assumed here, the GW

burst rate for MS stars grows substantially. Observation of a num-

ber of GW bursts from the GC would therefore have implications

for our understanding of stellar dynamics near MBHs. The obser-

vation of a GW burst would probably allow one to constrain the

masses of the system. In our models, we find that stellar BHs are

the most likely candidates to be bursting sources. However, if the

bursting source is a WD, then this would imply that either stellar

BHs have masses much lower than 10 M�, or that their number is

much smaller than assumed here; in both cases the distribution of

WDs would be steeper than we assumed, and our model with cut-

off, but without mass segregation, indicates that several WD bursts

per year are then to be expected. Interestingly, similar conclusions

would apply for inspiral sources (Hopman & Alexander 2006b).

Using stellar dynamics simulations, Freitag (2003) suggested

that, at any given time there are ∼1–3 continuous GW sources at the

GC (i.e. EMRIs), namely MS stars with a mass of ∼0.05–0.1 M�
on orbits with P � 3 × 104 s. This result would imply a burst rate

much higher than estimated here. We note that a large population of

low-mass MS stars would lead to a slightly higher burst rate because

of the larger number of stars and the weaker depletion by GW emis-

sion. However, the EMRI rates obtained by Freitag (2003) seem to

have been overestimated, due to the approximate treatment of the

condition for GW-driven inspiral relying on a noisy particle-based

estimate of the relaxation time. Furthermore, in that work, once it

had reached the GW-dominated regime the possibility for a MS star

to be destroyed by collisions was neglected.

We stress that a star on route to become an EMRI is unlikely to be

a bursting source: the event rate at which EMRIs are created is of the

order of �EMRI ∼ 0.1 Myr−1, while the time which a typical future

EMRI spends at orbits with periods less than 1 yr is ti ∼ 0.05 Myr

(Hopman & Alexander 2006b), implying that the probability of

observing such a source in the GC is of the order of ∼ti�EMRI ∼ 5 ×
10−3. This confirms our assumption that the inner regions of the

cusp are depleted in presence of GW energy losses (Section 3.3.3).

Bursts of GWs from stars passing close to extragalactic MBHs are

a potential source of noise for LISA. An estimate of the contribution

to LISA’s noise budget is out of the scope of this paper, and will be

considered elsewhere.

RHBF06 also considered the possibility of observing GW bursts

from the Virgo cluster, and estimated that only stellar BHs could

be observed as bursting sources, with of the order of three bursts

per year. We note that our higher rate of bursting BHs in the cen-

tre of our Galaxy than that found by RHBF06 does not imply that

we also predict a higher rate of bursts from Virgo: for fixed S/N,

a smaller periapse is required in Virgo, which in turn implies a

larger inner cut-off of the density profile (see equation 14). Tak-

ing this into account, we find that the bursting rate in Virgo is

only of the order of ∼10−4 yr−1 per galaxy. Since there are about

2100 galaxies in the Virgo cluster (Binggeli, Sandage & Tammann

1985), and only a fraction of these have MBHs with relevant

masses, no GW bursts are expected to be detected in the Virgo

cluster.

Finally, we note that the farthest distance to which non-repeating,

bursting 10 M� stellar BHs can still be detected is ∼100 Mpc. The

rate at that distance is ∼10−6 yr−1. Since the local MBH density of

∼106 M� MBHs is ∼10−2 Mpc−3 (Aller & Richstone 2002), this

yields an annual detection probability of 1 per cent.
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