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ABSTRACT

The capture and inspiral of compact stellar objects into massive black holes is an important source of low-frequency
gravitational waves (with frequencies �1–100 mHz), such as those that might be detected by the planned Laser
Interferometer Space Antenna (LISA). Simulations of stellar clusters designed to study this problem typically rely
on simple treatments of the black hole encounter that neglect some important features of orbits around black holes, such
as the minimum radii of stable, nonplunging orbits. Incorporating an accurate representation of the orbital dynamics
near a black hole has been avoided due to the large computational overhead. This paper provides new, more
accurate expressions for the energy and angular momentum lost by a compact object during a parabolic encounter
with a nonspinning black hole, and the subsequent inspiral lifetime. These results improve on the Keplerian expres-
sions that are now commonly used and will allow efficient computational simulations to be performed that account
for the relativistic nature of the spacetime around the central black hole in the system.

Subject headings: black hole physics — gravitational waves

1. INTRODUCTION

The event rate for detection of extreme mass ratio inspirals
(EMRIs) with LISA depends on the efficiency of capture of com-
pact objects by massive black holes in galactic nuclei. Current
event rate estimates (Gair et al. 2004) are derived using results
from stellar dynamics simulations of nuclear star clusters (Hils
& Bender 1995; Sigurdsson & Rees 1997; Freitag 2001, 2003;
Freitag & Benz 2002; Ivanov 2002; Hopman&Alexander 2005),
in which the clusters are dynamically evolved over the lifetime
of a galaxy. Of central importance to these simulations is the es-
timate of the effect of gravitational radiation on the evolution of
a particle’s orbital parameters as a function of proximity to the
central black hole. The comparison of gravitational radiation time-
scales against cluster interaction timescales is a way to quantify
whether a star stays bound to the black hole (eventually spiraling
in to its death) or whether it returns to the parent star cluster and is
scattered away from the black hole by encounters with other stars.
Scattering by other stars can also put the star onto a quasi-radial
orbit so that it plunges into the black hole directly rather than in-
spiraling gradually. LISAwill only be able to detect long-lived in-
spirals (Gair et al. 2004), so it is important to quantify the fraction
of captures that terminate in these two distinct ways. Simulations
suggest that a significant fraction of captures will end in quasi-
radial plunges rather than inspirals (Hils &Bender1995; Hopman
& Alexander 2005), which will impact the LISA event rate.

For any given encounter with the central black hole, the
gravitational radiation inspiral lifetime �gw of a member of the
population is compared against the two-body relaxation time-
scale � rlx with other particles in the simulation. For an orbit of
eccentricity e, if �gw < (1� e)�rlx, the particle is removed from
the simulation, and its orbital parameters are used to estimate
the strength of the gravitational waves that might reach our de-

tectors. If the relaxation timescale is such that (1� e)�rlx < �gw,
then two-body encounters with other cluster members will alter
the pericenter distance of a particle’s orbit before gravitational
radiation reaction causes it to merge with the central black hole
(Sigurdsson & Rees 1997; Ivanov 2002).

The conventional method for treating gravitational radiation in
these simulations is to use the formalism of Peters & Mathews
(1963) and Peters (1964), which assumes that the particles and
central masses are pointlike, Newtonian objects and that the par-
ticle orbits are Keplerian trajectories. This framework does not
account for the fact that the central body is a black hole and that
the orbits and orbital evolution can be decidedly non-Keplerian
in nature. This paper presents an improvement to the traditional
Peters &Mathews treatment, based on perturbative calculations.
By exploiting the extrememass ratio of the system, the inspiraling
object can be regarded as a small perturbation of the spacetime
of the central black hole. While black hole perturbation theory is
well understood (Poisson 2004), the solution requires extensive
numerical calculations for general orbits. However, the orbits of
interest in stellar dynamics calculations are usually highly eccen-
tric, and for such orbits the inspiral timescale can be estimated
to an accuracy of�1% (depending on the precise eccentricity at
capture) simply by knowing the change in eccentricity during
the first encounter with the black hole.

Data for the energy and angular momentum change on a para-
bolic orbit are available in the literature (Martel 2004) and can
be used as a starting point for treating the dynamics of EMRIs.
On the basis of an understanding of the properties of geodesics
in the Schwarzschild spacetime, it is possible to fit a simple
function to these data; the corresponding formulae are all that are
required by stellar dynamics codes and represent a significant
improvement over the standard Keplerian treatment (Peters &
Mathews 1963).
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This paper is organized as follows. Section 2 describes
geodesics in the Schwarzschild spacetime and provides fits for
the total radiated energy�E and angularmomentum�L on single
parabolic encounters with the black hole. Section 3 presents an
expression for the inspiral lifetime based on these fits. In x 4
we briefly discuss how the gravitational radiation losses from
orbits of arbitrary (low) eccentricity can be estimated, and finally,
x 5 summarizes the implications and possible applications of
this work.

2. GEODESICS AND GRAVITATIONAL WAVE FLUXES
FOR PARABOLIC ORBITS

The results of Peters &Mathews (1963) for the radiated energy
and angular momentum and the inspiral lifetime are simple to
implement, with a low associated computational cost. This makes
them ideal for use in large simulations. The formalism has the
disadvantage that it treats the binary components as point masses
onKeplerian orbits. Captured stars that evolve into an EMRI gen-
erally must pass very close to the black hole, where the orbit is
very non-Keplerian. The Peters & Mathews treatment neglects
important features of the gravitational wave emission due to the
presence of the black hole.

One simple improvement that can be made is to use a
‘‘semirelativistic’’ approximation, i.e., using the fully relativistic
orbit in place of the Keplerian orbit, while using an approximation
for the corresponding gravitational wave emission. This approach
was first suggested by Ruffini & Sasaki (1981) and is explored
extensively in a companion paper (Gair et al. 2005). To compute
radiation fluxes correctly, one must use black hole perturbation
theory and solve the Teukolsky equation (Poisson 2004). The
problem of radiation from orbits in the Schwarzschild space-
time was examined by Cutler et al. (1994). They provided use-
ful asymptotic results for nearly circular and nearly plunging
orbits and tabulated fluxes for orbits with a variety of periapses
and eccentricities. However, their code worked in the frequency
domain, which is not well suited for dealing with the highly
eccentric orbits of interest in the capture problem. More re-
cently, results for the fluxes of radiation from parabolic orbits in
Schwarzschild have become available (Martel 2004), which were
computed using a time domain code. Using insight gained from
studying the geodesic equations (Gair et al. 2005), it is possible
to derive a simple fitting function for the energy and angular
momentum emitted that matches the perturbative results to within
a fraction of a percent. This function may be implemented in stel-
lar cluster simulations as easily as the Keplerian expressions and
for little additional computational cost.

The Schwarzschild geodesic equations for an equatorial orbit
(without loss of generality) are

dr

d�

� �2
¼ E2

c2
� c2

� �
þ 2GM

r
1þ L2z

c2r 2

� �
� L2z

r 2
; ð1Þ

d�

d�

� �
¼ Lz

r 2
; ð2Þ

dt

d�

� �
¼ E

c2 � 2GM=rð Þ ; ð3Þ

where � is the proper time along the geodesic, Lz is the con-
served specific angular momentum of the particle,1 E is the con-

served specific energy, and M is the mass of the central black
hole. In the weak field (r3GM /c2 or Lz 3GM /c), these reduce
to the usual Keplerian equations ofmotion, the geodesic is a conic
section, and there is a well-defined periapse and eccentricity. These
are related to the orbital energy and angular momentum by

E

c2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� GM 1� eKð Þ

c2rKp

s
; ð4Þ

Lz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eKð ÞGMrKp

q
: ð5Þ

We have used superscript ‘‘K’’ to denote a parameter defined in
the Keplerian way. In the strong field, relativistic effects cause
the orbit to deviate from Keplerian motion, and the normal no-
tion of eccentricity—as a geometrical parameter characterizing
the shape of a conic section—is not valid. However, we can still
define a relativistic orbital periapse, r Rp , as the Schwarzschild
radial coordinate of the inner turning point of the motion, and
we can define a relativistic eccentricity, eR, from r

R
p and the

Schwarzschild coordinate of the outer turning point of the
motion (the relativistic apoapse, r Ra ), using the usual equation

eR ¼
r Ra � r Rp

r Ra þ r Rp
: ð6Þ

The relationship between the relativistic parameters and the
orbital energy and angular momentum is

E

c2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

GM 1� eRð Þ 1þ eRð Þc2r Rp � 4GM
h i

c2r Rp 1þ eRð Þc2r Rp � 3þ eRð Þ2
h i

GM
n o

vuuut ; ð7Þ

Lz ¼
1þ eRð Þc

ffiffiffiffiffiffiffiffi
GM

p
r Rpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ eRð Þc2rRp � 3þ eRð Þ2
h i

GM

r : ð8Þ

It is important to note the differences between equations (7)–
(8) and equations (4)–(5). In simulations of stellar clusters, the
parameters of orbits that pass close to the black hole are gen-
erally computed using the Keplerian relations. However, this
is not a good approximation for orbits that pass within a few
Schwarzschild radii of the black hole. The energy and angular
momentum are well defined out in the cluster where the orbital
parameters are determined. Equating the right-hand side of equa-
tion (7) with that of equation (4), and similarly for the right-hand
sides of equations (8) and (5), we can deduce a relationship be-
tween the Keplerian eccentricity and periapse and the relativistic
eccentricity and periapse, for orbits that have a specified energy
and angular momentum. We are mainly interested in highly ec-
centric orbits, so we work to linear order in (1� eK). Thus,

rRp ¼
rKp

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8GM

c2rKp

s !

� 1� eKð Þ
2

GM

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rKp rKp �8GM=c2
� �r

þ rKp �8GM=c2

rKp � 8GM=c2
;

1� eR ¼ 1� eKð Þ
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8GM

c2rKp

s !
: ð9Þ

1 For equatorial orbits in Schwarzschild, the z-component of the angular
momentum Lz ¼ L, the total angular momentum.Wemaintain the notation Lz in
order to facilitate future comparisons with orbits in Kerr spacetimes, for which
Lz is conserved but not L.
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The energy and angular momentum losses given below are
expressed in terms of the relativistic (superscript ‘‘R’’) param-
eters, so it is important to use equation (9) to convert Newtonian
parameters into their relativistic counterparts when evaluating
gravitational wave fluxes. Indeed, even when using Peters &
Mathews level approximations, one should use the relativistic
rather than the Keplerian parameters for better results. This ap-
proach was used in Hopman & Alexander (2005), and we dis-
cuss it in more detail in x 4.

For the rest of this section we concentrate on parabolic orbits,
i.e., orbits for which eK ¼ eR ¼ 1. A parabolic orbit has E ¼ c2

and is uniquely parameterized by its periapse (or angular mo-
mentum). The angular momentum is related to the periapse by

Lz ¼
ffiffiffiffiffiffiffiffiffiffiffi
2GM

p
crRpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2rRp � 2GM
q : ð10Þ

This should be compared to the Keplerian relation, Lz ¼
(2GMrKp )

1/2. The radial geodesic equation for a parabolic orbit
is

dr

d�

� �2

¼ 2GM

r 3
r � r Rp

� �
r �

2GMrRp

c2r Rp � 2GM

 !
: ð11Þ

For any given eccentricity, there is a minimum value for the
periapse, below which the orbit plunges directly into the black
hole. This occurs when the two inner turning points of the geo-
desic equation coincide. For parabolic orbits this is rRp ¼ 4GM /c2.
A geodesicwith precisely this periapse asymptotically approaches
a circular orbit as it nears the periapse, and it spends an infinite
amount of time whirling around the black hole. The asymptotic
circular orbit is an unstable orbit of the gravitational potential.
Cutler et al. (1994) call this orbit the ‘‘separatrix,’’ since it sep-
arates bound from plunging orbits in phase space.

In calculating the energy and angular momentum lost from an
orbit, we must make the assumption of adiabaticity, i.e., that the
timescale over which the parameters of the orbit change sig-
nificantly due to gravitational radiation is much longer than the
timescale of the orbit. This is valid in the extreme mass ratio
limit,m/MT1. Under this approximation, we treat the orbit as
an exact geodesic of the spacetime, compute the corresponding
radiation fluxes, and then update the orbital parameters to a new
geodesic before repeating this procedure. A particle on a sep-
aratrix orbit would radiate an infinite amount of gravitational
radiation, as it spends an infinite time ‘‘whirling’’ around the
black hole on a nearly circular orbit. In this case, adiabaticity
breaks down and it is wrong to neglect the effect of radiation
reaction. In practice, a particle that starts on such an orbit would
plunge into the black hole in a finite time. However, one still
expects the energy and angular momentum losses to diverge as
the separatrix is approached.

During the whirl phase, the orbit is almost circular, and so the
total energy and angular momentum radiated will be approxi-
mately proportional to the number of ‘‘whirls’’ (i.e., complete
revolutions in �) that the orbit undergoes. Counting the number
of whirls indicates that, for a parabolic orbit, the total radiated
energy and angular momentum will diverge like the logarithm
of r Rp � 4GM /c2 near the separatrix. The derivation of this result
is given in more detail in Gair et al. (2005), and was also dis-
cussed in Cutler et al. (1994). For orbits that do not come near
the black hole, the Keplerian approximation is expected to be
valid. Therefore, in the limit r R

p
! 1, the energy and angular

momentum radiated, �E and �Lz, should approach the Peters
& Mathews results:

�E¼� 85�

12
ffiffiffi
2

p c2
m

M

c2r Rp

GM

 !�7=2

; �Lz ¼�6�
Gm

c

c2r Rp

GM

 !�2

:

ð12Þ

Our aim is to write a single expression for�E that can be used
for any choice of r Rp . Using the preceding arguments, we deduce
that any such expression must diverge logarithmically near the
separatrix at r Rp ¼ 4GM /c2 and must recover equation (12) in
the limit r

R
p !1. Denoting y ¼ c2r Rp /(GM ), a functional form

that has the correct behavior in these two limits is

M

m
�X ¼ FX ( y)

¼
XN
n¼0

AX
n

( y� 4)

y2

� �n( )
cosh�1 1þ BX

0

4

y

� �NX�1
1

y� 4

" #

þ ( y� 4)

y1þNX =2

XN
n¼0

CX
n

( y� 4)

y2

� �n

þ ( y� 4)

y2þNX =2

XN�1

n¼0

BX
nþ1

( y� 4)

y2

� �n
: ð13Þ

In this, X is either E/c2 or cLz /(GM ) and we fix NE ¼ 7, NLz ¼ 4
to give the correct leading order behavior (eq. [12]) as r Rp ! 1.
The parameter N gives the order of the fit, i.e., the number of
terms in the expansion that we use. To ensure that the fitting
function asymptotically approaches equation (12), we impose a
constraint on the coefficient CX

0 :

CE
0 ¼ � 85�

12
ffiffiffi
2

p � 64AE
0

ffiffiffiffiffiffiffiffi
2BE

0

q
; CLz

0 ¼ �6�� 8ALz
0

ffiffiffiffiffiffiffiffiffi
2BLz

0

q
:

ð14Þ

Further discussion of this fitting function is given in Gair et al.
(2005). In that paper, we derive the fitting function coefficients
that match the results of a ‘‘semirelativistic’’ calculation. How-
ever, the most accurate calculation of energy and angular mo-
mentum fluxes requires solution of the Teukolsky equation. Data
from such calculations are available in the literature for parabolic
orbits around Schwarzschild black holes (Martel 2004). Using
the data from that paper, we were able to derive fitting function
coefficients to use in equation (13) that recover the Teukolsky
results extremely well. In fact, taking N ¼ 2 is sufficient for
better than 0.2% accuracy, and the corresponding fit coefficients
are

AE
0 ¼ �0:318434; AE

1 ¼ �5:08198; AE
2 ¼ �185:48;

BE
0 ¼ 0:458227; BE

1 ¼ 1645:79; BE
2 ¼ 8755:59;

CE
0 ¼ 3:77465; CE

1 ¼ �1293:27; CE
2 ¼ �2453:55;

ALz
0 ¼ �2:53212; ALz

1 ¼ �37:6027; ALz
2 ¼ �1268:49;

BLz
0 ¼ 0:671436; BLz

1 ¼ 1755:51; BLz
2 ¼ 9349:29;

CLz
0 ¼ 4:62465; CLz

1 ¼ �1351:44; CLz
2 ¼ �2899:02:

ð15Þ

Figure 1 shows the percentage error in using this approximation
over the range of periapse given by Martel. For comparison, we
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also show the error in using the Peters &Mathews result (eq. [12]),
evaluated for Keplerian and relativistic parameters. The error
from using the fitting function (eq. [13]) is significantly smaller
than the difference between these fluxes and the Peters &
Mathews results. The fluctuations in the error are due to the
difference between a smooth function and noisy numerical re-
sults. The magnitude of the difference is everywhere smaller
than the numerical error that Martel quotes (1%) and is a factor
of approximately 1000 smaller than the error using Peters &
Mathews.

Equation (13) strictly applies only to parabolic orbits, i.e.,
with eR ¼ 1. In realistic situations, the eccentricity at capture
will be very high but less than unity, 0 < 1� eR0 T1. For such
orbits, equation (13) can still be used and gives reliable results.
The functional form fails if r Rp < 4GM /c2, but the last stable
orbit (LSO) is related to the orbital eccentricity by c2r RpLSO ¼
2GM (3þ eR)/(1þ eR), and so r RpLSO > 4GM /c2 for all eR < 1.
In fact, for nonparabolic orbits, a slightly better expression for
�E is obtained by using equation (13) with (y� 4) replaced
with y� 2(3þ eR)/(1þ eR)½ � and (4/y) replaced with 2(3þ eR)/
(1þ eR)y½ � (there is some discussion of suitable fitting functions
for generic orbits in Gair et al. 2005). However, for extremely
eccentric orbits, this change only makes a difference for orbits
that are extremely close to the LSO.

3. INSPIRAL TIMESCALES

In stellar dynamics calculations that attempt to estimate the
LISA EMRI event rate, one must determine when a given par-
ticle is captured by the central black hole. Broadly speaking, a
particle is captured when �gw P (1� e)�rlx (as before, �gw and
� rlx are the timescales for gravitational wave inspiral and two-
body relaxation, respectively). Heuristically, the picture is that
if the orbital parameters evolve rapidly enough due to the
emission of gravitational radiation, the star will spiral into the
black hole (be ‘‘captured’’) before the cumulative perturbations
to its orbit due to two-body encounters with other members of
the cluster become large enough to put the star onto a new or-
bit, which either does not come near the central black hole or
plunges directly.
The canonical estimate of �gw is given by Peters (1964) for a

star that initially has semimajor axis a0 and eccentricity e0:

�gw ¼ �
Z eK

0

0

1

de=dt
de

¼ 12c40
19�

Z eK
0

0

de
e29=19 1þ (121=304)e2½ �1181=2299

1� e2ð Þ3=2
; ð16Þ

where the constants c0 and � are given by

c0 ¼
rKp

� �
0
1þ eK0

� �
eK0
� 	12=19

1þ (121=304) eK0
� 	2h i870=2299 ; � ¼ G3

c5
64

5
M 2m:

ð17Þ

In writing this and subsequent expressions in this section, we
have assumed an extrememass ratio,M 3m to setM þ m � M .
Equation (16) is derived by integration of the Peters &

Mathews fluxes over an inspiral. However, stars that become
EMRI events for LISA are captured with very high eccentric-
ity (typically e � 0:9999 or higher). In the limit eK0 ! 1, equa-
tion (16) becomes (Peters 1964)

�gw rKp ; eK0

� �
� 24

ffiffiffi
2

p

85

c5

G3M 2m

rKp

� �4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� eK0

p : ð18Þ

This form of the timescale expression is used directly in some
stellar cluster simulations (Hopman & Alexander 2005) and is
a very accurate approximation to the true timescale for inspi-
rals that are initially highly eccentric. The divergence of the
inspiral timescale as eK0 ! 1 arises from the divergence of the
orbital timescale (at fixed periapse) in the same limit:

Torb rp; e0
� 	

� 2�ffiffiffiffiffiffiffiffi
GM

p rp

1� e0

� �3=2

: ð19Þ

In equation (19) (and eqs. [20] and [21] below), rp and e can be
either the relativistic or the Keplerian values, so superscripts
have been omitted. Equation (19) gives the dominant piece of
the timescale even accounting for the presence of the black
hole. For nearly parabolic orbits

de

dt
� �e(rp; e ¼ 1)

Torb(rp; e)
�

ffiffiffiffiffiffiffiffi
GM

p

2�

1� e

rp

� �3=2

�e(rp; e ¼ 1);

ð20Þ

Fig. 1.—Accuracy of fit to relativistic fluxes. This figure shows the absolute
percentage error when using the fitting function described in the text (solid line)
to approximate the energy (top) and angular momentum (bottom) fluxes tabu-
lated in Martel (2004). For comparison, we also show the error from using
the Peters & Mathews result (eq. [12]), evaluated for Keplerian (superscript
‘‘K’’) parameters (dotted line) and for relativistic (superscript ‘‘R’’) parameters
(dashed line). Two different scales have been used—the left-hand scale applies
to the errors in the fitting function, while the right-hand scale applies to the
errors in both applications of Peters &Mathews. The horizontal axis is the value
of the relativistic periapse, c2rRp /GM , of the geodesic in question.
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in which �e is the change in eccentricity on a single orbit (the
initial pass). The timescale for inspiral is dominated by

�gw(rp; e0) � � 2

�e(rp; e ¼ 1)

2�ffiffiffiffiffiffiffiffi
GM

p
r 3=2pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e0

p : ð21Þ

This expression is also given in Hopman & Alexander (2005).
In the Peters & Mathews (1963) approximation,

�eK rKp ; 1
� �

¼ �85�(GM )3=2Gm



6
ffiffiffi
2

p
c5 rKp

� �5=2� �
;

giving the result in equation (18). Using the fits to the pertur-
bative results, �eR(r R

p
; eR ¼ 1) may be expressed

�eR rRp ; e
R ¼1

� �
¼ @eR

@E
�E rRp ; e

R ¼ 1
� �

þ @eR

@Lz
�Lz rRp ; e

R ¼ 1
� �

¼ 2
r Rp

GM
�E rRp ; eR ¼ 1
� �

¼ 2
c2r Rp

GM

m

M
FE

c2r Rp

GM

 !
; ð22Þ

where the function FE (y) is the fit to the energy loss derived
above (eqs. [13]–[15]). Together, equations (21) and (22) con-
stitute an improved estimate of the inspiral lifetime.

Figure 2 compares the asymptotic timescale (eq. [21]) com-
puted using three methods: T pert

asym, generated using the pertur-
bative result (eq. [22]); T KepPM

asym
, generated using the Peters &

Mathews result (eq. [18]) evaluated for Keplerian (‘‘K’’) pa-
rameters; and T RelPM

asym , generated using the Peters & Mathews
result (eq. [18]) evaluated for relativistic (‘‘R’’) parameters. The
figure shows the ratio of these various timescales as a function
of the initial periapse of the orbit. This periapse is theKeplerian
periapse of the orbit, which is the quantity normally evaluated
in stellar cluster simulations. The Keplerian Peters & Mathews
timescale is then given directly by equation (18), while the other
timescales are given by first computing the corresponding relativ-

istic periapse and eccentricity (eq. [9]). The curves are actually
eccentricity dependent, but curves for different eccentricities
are almost indistinguishable for the eccentricities of interest,
10�2 P 1� eR P 10�6. The figure indicates that all three ap-
proximations agree for large initial periapses but deviate as the
periapse is reduced. Comparing to the standard Keplerian time-
scale, TKepPM

asym , for rKp P 80GM /c2, the perturbative timescale is
smaller by 10% or more, while for rKp P 16GM /c2, it is more
than 50% lower. This is a reasonably large discrepancy, and it
therefore seems plausible that inclusion of the more accurate
decay timescale in stellar cluster simulations could enhance the
capture rate. On a note of caution, a parabolic Keplerian orbit
with periapse rKp ¼ 8GM /c2 corresponds to the relativistic orbit
with periapse r Rp ¼ 4GM /c2, i.e., the separatrix orbit. Thus, all
orbits with Keplerian periapse less than 8GM /c2 are plunging
orbits. The standard cutoff used in most stellar cluster simu-
lations is at a Keplerian periapse of 2GM/c 2. This correction
will thus tend to decrease the number of capture orbits.Whether
this dominates over the enhanced rate due to the reduction in
inspiral lifetime is not clear, but can be determined by simula-
tion. This is currently being pursued.

It is also clear from Figure 2 that a significant part of the
improvement derives from the coordinate choice, i.e., using the
relativistic periapse and eccentricity (9). A significantly improved
estimate of both the radiation fluxes and the inspiral timescale can
be obtained simply by evaluating the standard Peters &Mathews
results (eqs. [12] and [18]) for the relativistically defined periapse
and eccentricity (eq. [9]). This is discussed briefly in x 4 and in
more detail in Gair et al. (2005). Nonetheless, the perturbative
timescale is still more than 20% shorter for rKp P 16GM /c2 and
should be used if possible. In Hopman &Alexander (2005), rel-
ativistic parameters are used to describe the orbit, and the cut-
off for plunging orbits is correctly defined. This might explain
some of the reduction in event rate that they observe, although
this reduction is dominated by diffusion onto plunging orbits.
Inclusion of the perturbative results described here in the same
type of simulation used in Hopman & Alexander (2005) should
lead to an enhancement in rate, but it is not entirely clear how
large an effect this will be.

An important point to note is that both equation (21) and
the Peters expression (eq. [18]) are derived by integrating the
orbital averaged fluxes, hde/dti and hdrp/dti. In the test parti-
cle (zero mass) limit this is correct, but for nonzero mass ra-
tios it will not be entirely accurate. The discrepancy is apparent
from the fact that the gravitational decay timescale diverges like
(1� eR)�1/2 as eR ! 1, which is less rapid than the divergence
of the orbital period, (1� eR)�3/2. If the particle was initially at
periapse, the decay timescale is not too inaccurate, but in prac-
tice the particle will start near apoapse, out in the stellar cluster.
Physically, there are no significant gravitational radiation losses
until the particle gets close to the black hole, so the decay time-
scale must be at least as long as half the first orbital period. The
discreteness of the GWemission should become important when
one minus the initial eccentricity of the orbit, 1� eR0 , is less than
the change in eccentricity on the first pass, �eR(r Rp ; eR ¼ 1),
i.e., when

1� eR0
� 	

P �2
m

M

c2r Rp

GM
FE

c2r Rp

GM

 !
: ð23Þ

For this eccentricity, the change in (1� eR) over the first orbit
is of the same magnitude as (1� eR0 ); thus, the underlying as-
sumption that the particle completes an entire orbit on the initial

Fig. 2.—Comparison of the asymptotic approximation to the timescale in
eq. (21) computed using the three methods described in the text. The plot shows
the ratio T pert

asym/T
KepPM
asym (solid line), the ratio TRelPM

asym /TKepPM
asym (dashed line), and the

ratio T pert
asym/T

RelPM
asym (dotted line), as a function of the initial Keplerian periapse.
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geodesic is false. This is also the point at which the decay time-
scale (eq. [21]) becomes comparable to the initial orbital period,
so it is clear that the assumptions are breaking down. In this
regime, the gravitational wave decay timescale is more accu-
rately computed by assuming the periapse and eccentricity change
discretely at periapse, and adding up the orbital periods of this
sequence of geodesics. At the same level of approximation used
to derive equation (21), the corresponding GW inspiral time-
scale is given by

�gw rRp ; eR0

� �
� �ffiffiffiffiffiffiffiffi

GM
p

rRp

1� eR0

 !3=2

þ
2� r Rp
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X1
l¼1

1
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� �

¼
� r Rp

� �3=2
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(

1
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" #3=2

; �
3

2
;

1� eR0

�eR rRp ; eR ¼ 1
� �

0
@

1
A) ð24Þ

where �(z, q) is the generalized Riemann zeta function. The first
term in equation (24) is the time taken to reach periapse from
apoapse on the first pass, while the second term is the summa-
tion of orbital periods over the subsequent sequence of geo-
desics. This expression neglects the change in periapse on each
pass, the difference in �eR on each pass due to the evolution
of eR and approximates a finite series (which terminates when
1� eR0 þ l�eR equals the plunge eccentricity) with an infinite
sum. However, these are all lower order corrections in the mass
ratio, m/M , and may be neglected for initially highly eccentric
EMRIs.

In the limit 131� eR0 3�eR(r Rp ; eR ¼ 1), equation (24)
is equivalent to equation (21), but when 1� e0 � �eR(r Rp ;
eR ¼ 1), this is no longer true. Figure 3 shows the ratio of the
integral timescale (eq. [21]) to the discrete timescale (eq. [24])
as a function of (1� eR0 )/�eR(r Rp ; eR ¼ 1). As expected, the in-

tegral form (eq. [21]) does well until the estimated point of
breakdown (eq. [23]), but significantly underestimates the de-
cay timescale in the extreme parabolic limit. In this regime, a
more accurate orbital decay timescale can be obtained by con-
sidering the sum of half the initial orbital period plus the decay
time (eq. [21]) evaluated for the orbit with periapse r

R0
p ¼

rRp þ �r Rp /2 and eccentricity eR0 ¼ eR þ �eR/2, where �r Rp and
�eR are the predicted change in periapse and eccentricity for the
initial geodesic. In other words, we compute the integral decay
timescale starting when the particle reaches periapse for the first
time. This gives
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Figure 3 also shows the ratio of the revised timescale (eq. [25])
to the discrete timescale (eq. [24]) (with the approximation r R0p ¼
rRp ). This expression performs very well in all regimes and is
at most a 2% overestimate near 1� e0 ¼ �e(r Rp ; eR ¼ 1)/4. In
most situations the difference between equations (21) and (25)
is small, but for any initial eccentricity, there is a mass ratio for
which condition (23) holds, and in that regime equation (25)
must be used. However, this expression is equally easy to eval-
uate in numerical codes.

4. EXTENSION TO GENERIC ORBITS

This paper has focused on parabolic orbits, as these are of
most relevance for astrophysical captures. For orbits of mod-
erate eccentricity, this analysis will break down. If data based
on perturbative calculations were available for the energy and
angular momentum losses on generic orbits, it would be pos-
sible to compute a fit analogous to equation (13) that could be
used generically (see discussion in Gair et al. 2005). This is not
true at present. However, a significantly better approximation
to the fluxes can be obtained simply by evaluating the Peters &
Mathews fluxes, using the relativistic (rather than the Keplerian)
definition of the orbital parameters. This approach was used in
Hopman & Alexander (2005).
Inversion of equations (7)–(8) yields a quadratic to give

eR and r Rp as functions of E and Lz (which can be obtained from
the Keplerian parameters using eqs. [7]–[8] if necessary). For
orbits of moderate eccentricity, e P 0:9, it is not appropriate to
use the (eccentricity-independent) flux expressions or timescale
formula quoted earlier, since these were evaluated in the high-
eccentricity limit. However, if the relativistic eccentricity and peri-
apse are computed for the orbit in question, a good approximation

Fig. 3.—Ratio of the integral inspiral timescale (eq. [21]), TI
gw, to the discrete

inspiral timescale (eq. [24]), TD
gw, as a function of (1� eR0 )/�e(rRp ; eR ¼ 1). The

dashed line uses the integral timescale computed directly from eq. (21), while
the solid line includes the first half-period correction (eq. [25]).
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to the energy and angular momentum radiated can then be ob-
tained using the Peters & Mathews expressions
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The corresponding inspiral timescale can be computed by inte-
grating these fluxes along an inspiral trajectory, as in equation (16).
We emphasize that for most situations of astrophysical interest
in the capture problem, the parabolic results given earlier in this
paper should be used. However, if fluxes for moderate eccen-
tricity orbits are required, equations (26) and (27) evaluated
for the relativistic orbital parameters perform much better in
the strong field than if they are evaluated for the Keplerian or-
bital parameters (Gair et al. 2005). That this approach will yield
a better estimate of the energy and angular momentum fluxes is
not clear a priori, but has been verified by comparison with fluxes
computed using perturbation theory (Gair et al. 2005). This
technique essentially identifies orbits that are geometrically sim-
ilar. In the strong field, a Schwarzschild geodesic with a given
energy and angular momentum is nothing like the Keplerian
orbit with parameters (eK; rKp ), but it does look somewhat like
a Keplerian orbit with parameters (eR; r Rp ); e.g., the turning
points of the motion are at the same radii. The orbital geometry
is very important for determining the radiation field, and this is
probably the reason that a better estimate of the flux can be
obtained via this procedure.

If more accurate fluxes are required for generic orbits, one
can use the expressions quoted in Barack & Cutler (2004). These
are based on post-Newtonian expansions and are therefore only
approximations to the true fluxes, but improve slightly on equa-
tions (26) and (27). For parabolic orbits, the fit presented here
(eqs. [13]–[15]) gives the correct energy and angular momen-
tum flux from an extreme mass ratio orbit under the assumption
of adiabaticity. It is therefore more accurate than any post-
Newtonian calculation for parabolic and highly eccentric orbits,
and so should be used under those circumstances. Further flux
expressions are given inGair &Glampedakis (2005), which com-
bine fits to perturbative calculations for the fluxes from circular
orbits with post-Newtonian expressions for the fluxes from ec-
centric orbits. The resulting expressions improve on Barack &
Cutler (2004) and could be combined with equations (13)–(15)
to interpolate the evolution of generic inspirals.

5. DISCUSSION

In this paper, we have presented new simple analytic expres-
sions for the energy and angular momentum radiated in gravi-
tational waves by and subsequent inspiral lifetime of stars that
pass close to black holes on nearly parabolic orbits. These ex-
pressions are based on the results of numerical perturbative cal-
culations that are available in the literature (Martel 2004) and
are considerably more accurate than the standard Keplerian
results of Peters & Mathews (1963) that are commonly used.
We find that the inspiral lifetime can be significantly reduced
when the capture problem is treated more carefully, which sug-
gests an increase in the capture rate compared to the results of

current simulations. However, the use of relativistic parame-
ters for describing the orbit might actually lead to a reduction in
events, since there are more plunging orbits.

Standard stellar cluster simulations (Freitag 2001, 2003;
Freitag & Benz 2002) characterize capture as the point at which
the gravitational wave inspiral timescale becomes comparable to
the two-body scattering timescale. Equation (25) can be easily im-
plemented in this context in place of the usual Peters & Mathews
timescale (eq. [16]). More recently, Hopman & Alexander (2005)
used Monte Carlo simulations to study the capture problem but
allowed for diffusion by two-body scattering after gravitational
wave emission had become important. They found that while
the standard criterion, �gw ¼ (1� e)�rlx, is a reasonable approx-
imation, there was a significant effect from scattering after this
point, with many stars being perturbed onto plunge orbits rather
than capture orbits. However, once �gw P 0:01(1� e)�rlx, this
effect was unimportant. At this point, the orbits are still in general
extremely eccentric, and so the parabolic flux equations (13)–
(15) and inspiral timescale (eq. [21]) are valid and improve
significantly over Peters & Mathews. Thus, the improvements
presented here could also be implemented easily in this type of
diffusion calculation. In the future, we hope that the results in
this paper will be usefully implemented in existing stellar cluster
simulation codes to investigate what effect a more careful treat-
ment of the gravitational radiation emission can have on capture
rates.

The results presented here are strictly valid only for parabolic
orbits but perform well for any orbit with sufficiently high ec-
centricity (e k 0:9). We expect that in the capture problem, all
orbits of interest will be highly eccentric. However, there are
other astrophysically interesting scenarios in which inspiraling
objects will begin on orbits with moderate or zero eccentricity.
These include the formation of stars in an accretion disk around
a black hole (Levin 2003; Goodman & Tan 2003), or the capture
of stars by stripping of binaries in three-body encounters (Miller
et al. 2005). In x 4 we described a simple trick that can be used
to improve the accuracy of the Peters & Mathews approxima-
tion to the gravitational radiation fluxes for orbits of moderate
eccentricity. Simply by using a different parameterization of the
orbit and evaluating the usual flux expression for those param-
eters, significantly more accurate results can be obtained (Gair
et al. 2005). The asymptotic approximation to the timescale in
equation (21) is no longer accurate when the initial eccentric-
ity is moderate. However, capture is usually not the interesting
question in astrophysical scenarios where this occurs, since
the stars have already been brought onto close orbits by other
mechanisms and so it will not usually be necessary to evaluate
the capture criterion �gw < (1� e)�rlx. If an inspiral timescale is
required to determine the subsequent evolution, or parameter
distribution of LISA sources, this may be computed by integrat-
ing the flux expressions along the inspiral trajectory. An im-
portant caveat is that the moderate eccentricity results quoted
in x 4 do not approach the parabolic results (eqs. [13]–[15]) in
the limit e ! 1, except in the weak field, rp ! 1. This is sim-
ply because the parabolic results are based on accurate pertur-
bative calculations, while the results in x 4 are approximations.
For this reason, it would be unwise to combine both approaches
in any single calculation. However, generally speaking the astro-
physical situations in which the parabolic results are applicable
are quite distinct from those in which the moderate eccentricity
approximations are required. If it is necessary to follow an in-
spiral from capture right up to plunge, a scheme should inter-
polate appropriately between the parabolic expression (eqs. [13]–
[15]) and either the moderate eccentricity expressions quoted in
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x 4 or other schemes for evolving moderate eccentricity EMRIs
(e.g., Barack & Cutler 2004; Gair & Glampedakis 2005).

The flux expressions (eqs. [13]–[15]) scale linearly with the
mass ratio, m/M . This follows from the assumption of an ex-
treme mass ratio, m/MT1. As the mass ratio is increased, the
approximations used here break down in various regimes. For
highly eccentric orbits, the assumption that the gravitational
wave emission can be averaged over the orbit no longer holds,
and it is necessary to account for the fact that the emission oc-
curs in short bursts near periapse. This was discussed at the end
of x 3, and it can be accounted for in a reasonably simple way. A
further consequence of increasing mass ratio is the failure of the
adiabatic approximation. The energy and angular momentum
fluxes are computed under the assumption that the source orbit
is a geodesic of the spacetime. This is a reasonable assumption,
provided that the timescale over which the orbital parameters
change appreciably due to gravitational wave emission is long
compared to the orbital timescale. This assumption breaks down
if the mass ratio is too high or for orbits that lie close to the
separatrix (for which the energy and angular momentum losses
diverge). Roughly speaking, the adiabatic approximation breaks
down when the change in eccentricity/periapse on a single en-
counter with the black hole is a significant fraction of the or-
bital eccentricity/periapse, but typically this only occurs close
to plunge. The other problem at high mass ratio is the break-
down of the perturbative approach—equations (13)–(15) are
based on a fit to calculations that have been carried out to lead-
ing order in the mass ratio. As the mass ratio becomes moderate,
this is no longer sufficiently accurate. Broadly speaking, our
results should apply to mass ratios less than �10�2 to 10�1.

The results in this paper apply to orbits in the Schwarzschild
spacetime, while theoretical models (Volonteri et al. 2005) and
some observational evidence (Miniutti et al. 2004; Fabian et al.
2005) indicate that most astrophysical black holes will have
significant spins. While some perturbative results are available
that compute the radiation from orbits around spinning black
holes (Poisson 2004), there is not yet sufficiently generic data
available from state-of-the-art computations to fit for that sit-
uation. However, the arguments that led to the construction of
the fitting function that performs so well in this case also apply
when the central black hole has spin. Once a sufficient quantity
of data is available, it should be possible to construct a fit of
similar form, although it will be more complicated, as the fit will
depend on three parameters—the black hole spin, the radius of
the periapse, and the inclination of the orbit. For more generic
applicability, eccentricity can also be included as a fourth pa-
rameter, although again this can only be done once perturbative
calculations for generic orbits have been completed.
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